Health Technologies

How to Navigate Structured and Unstructured Data as a Healthcare Organization

The proliferation of unstructured data in healthcare can pose data retention, purging and destruction challenges as well. The issue isn’t the amount of data that must be stored and the length of time it must be stored; instead, it’s where it has been stored and what has been stored, Laberge says.

For example, organizations commonly purge medical records that are inactive or delete research data sets once a study has been completed. With these unstructured data types, he says, “It’s not just a single database that you’re deleting. There are likely more files out there, and there’s metadata associated with them.”

Working with Patient-Generated Health Data

Patient-generated health data comes with its own set of concerns. While it may be available in real time from sources such as monitoring devices or digital therapeutics applications — and it may be structured in its own right — most of it is only transferrable into EHRs as unstructured summary reports, notes Natalie Schibell, vice president and principal analyst at Forrester. (The same is true of visit summaries that come from urgent care, retail health or telehealth providers not affiliated with a health system.)

In these situations, the valuable nuance of the summary document is largely lost. That doesn’t provide a complete picture of a patient’s health, which makes it difficult for health systems to analyze their vast data stores and see which patients need more attention, Schibell says. It also contributes to wasteful spending, as physicians without readily available results will simply order another test. “There’s a big risk in duplicative and disruptive care,” she adds.

DISCOVER: How modern data platforms can boost healthcare agility.

Six Steps to Making Unstructured Data More Meaningful in Healthcare

The American Hospital Association has suggested that now’s the time for hospitals to transform themselves into data-driven organizations. This will improve clinical and business decision-making, the AHA said, while also helping hospitals better serve their patients and their communities in times of need.

Becoming a data-driven organization depends on the ability to derive meaning from unstructured data. While this is a tall order for many health systems, there are a few key steps organizations can take to move forward.

  1. Optimize storage: Organizations should look at where data is stored as well as how those storage arrays are synced and distributed. Anything that can be migrated to the cloud should be. This will free up space onsite for the most recent and relevant data.
  2. Classify data: Data should be structured into groups based on how it will be used, who needs to access it, what level of confidentiality it needs, and what security policies apply to it. It’s also critical to look at the format of the data and determine whether it can, in fact, be structured.
  3. Bring order to unstructured data: If unstructured data has clinical or business value, it will benefit from normalization, which aims to make it look more like structured data. “Given the sheer volume of this data, you can’t do it manually,” Schibell says — but artificial intelligence and natural language processing can help.
  4. Look for context: NLP alone is insufficient for normalizing unstructured data, Laberge says. A clinical note may include the word diabetes, but that doesn’t automatically mean a patient has diabetes. The physician may have recorded that the patient doesn’t have diabetes, or that the patient’s father has diabetes.
  5. Code to industry standards: Once the context of data is understood, organizations should code as much information as possible to applicable industry standards such as ICD-10 or SNOMED. This helps bring structure to unstructured data, which makes it readable — and useful — for analytics and machine learning models.
  6. Give guidance to data science: Many data scientists don’t have a clinical background and may not know, for example, that a Type 2 diabetes diagnosis can be expressed using one of nearly two dozen ICD-10 codes. Clinical teams should provide data science teams with appropriate guidance before they dive into a data set, Laberge says.

As with many large-scale technology initiatives, the secret to success with unstructured data in healthcare is a well-defined scope and use case, Laberge says. Instead of trying to boil the ocean, organizations should focus on a key business metric or other quantifiable area of improvement.

“You need clarity about what you want to get out of the data you have,” says Laberge.

UP NEXT: Unlock this data practice set for modern data platform success.



About Author

You may also like

Health Technologies

Accelerating Strategies Around Internet of Medical Things Devices

  • December 22, 2022
IoMT Device Integration with the Electronic Health Record Is Growing By their nature, IoMT devices are integrated into healthcare organizations’
Health Technologies

3 Health Tech Trends to Watch in 2023

Highmark Health also uses network access control technology to ensure computers are registered and allowed to join the network. The